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 James (Wervyn) Wert – gt6264a 

1. Weighted-Majority.  For this problem you may use either the deterministic or randomized 

weighted-majority algorithm. 

 

a) Suppose we have some initial belief about which expert is likely to be the best one. In that 

case, a natural modification to the Weighted-Majority algorithm is that instead of initializing 

all the weights to 1, we instead initialize      , where    is our initial belief that expert   is 

going to be best (   
 
     ). Show how this results in a bound where the     term is 

replace d with         . For example, if you pick the randomized algorithm, you should get a 

bound of: 

  
 

 
      

 

   
       

 

  
   

 

where    is the number of mistakes of expert  .  So this bound is better if our prior beliefs 

turn out to be reasonable. 

 

b) What if we have infinitely many experts? Use your answer to part (a) to show how you can 

replace     with     g    in comparing our performance to that of the  th expert. 

 

For the first part, if we consider a deterministic weighted-majority algorithm and assign some 

initial weight    to the  th expert, then if after time   expert   has made    mistakes, his weight will 

be        
  . As with the normal deterministic weighted-majority algorithm, every time we make a 

mistake it’s because m re tha  ha f  f the pr babi ity distribution among the experts was in error, 

and so the total weight after reduction will be at most 75% of its prior value. The fact that there was 

some initial, uneven distribution is immaterial.  So we know that for all  ,        
         . 

Taking the log of both sides, we solve for   on the left side: 
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2. Tracking a moving target.  Here is a variation on the deterministic Weighted-Majority algorithm, 

designed to make it more adaptive. 

(a) Each expert begins with weight 1 (as before). 

(b) We predict the result of a weighted-majority vote of the experts (as before). 

(c) If an expert makes a mistake, we penalize it by dividing its weight by 2, but only if its weight 

was at least ¼ of the average weight of experts. 

 

Prove that in any contiguous block of trials (e.g., the 51st example through the 77th example), the 

number of mistakes made by the algorithm is at most       g  , where   is the number of 

mistakes made by the best expert in that block, and   is the total number of experts. 

 

The basic intuition here is that putting a lower bound on the weight of each expert will prevent any 

one expert from making so many mistakes over an arbitrarily long time so as to become 

insignificant, so that if they become the best expert for a period of time in the future, our algorithm 

will recognize it. 

 

First, we must consider how the weight of the algorithm changes with each mistake it makes. The 

first consideration is the effect of the group of “unreliable” experts whose weight does not get 

halved: call this group  . Because         
   

 
   

  
, then 

      

   
 

   
 
   

  
. And, since       , 

       
   

 
   

 
. In other words, the total weight of   is strictly less than one quarter of the total 

weight among all experts. Now when the algorithm makes a mistake, it is because more than half of 

the weight of the algorithm predicted incorrectly. Assuming all of the experts in   make a mistake 

at the same time as us, this still means that at least ¼ of the misplaced weight belongs to experts 

not in  , and will be cut in half.  Therefore, the total weight of the algorithm   mistakes after some 

time   will be at most        
  (where    is the weight of the algorithm at time  ). 

 

Now turning our attention to the best expert in the group during some block starting from time  , 

its own weight will be at most cut in half every time it makes a mistake (possibly less because of the 

lower threshold), making its weight at least        
 . Further, we can approximate a lower bound 

for    
  

  
, and write 

      

  
        or                . Solving for  , we find that 

            ,    g         g       g     , and so         g   . 

  



CS 8803 – Connections between Learning, Game Theory, and Optimization Homework #1 
 
 James (Wervyn) Wert – gt6264a 

3. 2-Player Zero Sum Games.  In this problem, you will prove that the Nash equilibria of a 2-player 

zero sum game have several interesting properties. First, they all exhibit the same value. Second, 

they are interchangeable, meaning that given two Nash equilibrium points         and       , 

the strategy pairs         and         are also Nash equilibria. 

 

Specifically, let   be a two person zero sum game, let    be the set of possible pure strategies for 

player  ,       and let             be the function describing the payoff value for player 

 , or the loss value for player   . The goal of player   is to maximize  , while the goal of player    

is to minimize  . Let         and         be two (mixed) Nash equilibria for  . Prove: 

(a)                                     

(b) Both         and         are Nash equilibria of  . 

 

Conclude that the set of Nash equilibrium points of a 2-player zero sum game is the Cartesian 

product of the equilibrium strategies of each player. 

 

The key to understanding this behavior is the fact that the game is a zero sum one. In a general two-

player game, the row player and the column player each have different utility functions, whereas 

here they share the same function. This means that we ca  defi e each p ayer’s pay ff i  terms  f 

the  ther p ayer’s   ss  a d vice versa  

 

Consider two given Nash equilibria at            and           . First, assume that    . In 

this case, we ask what the value of            . If    , then player    would have an incentive to 

change her strategy from    to   , meaning         could not be a Nash equilibrium. So    . But if 

   , player   would want to change his strategy from    to   , again contradicting the given. So 

   . Therefore our assumption was wrong, and    . We can similarly argue that     using the 

value           , and so we have proven that     and                  . 

Furthermore, since we have shown that       and by implication      , then     implies 

that       and      , and so all four strategy combinations must be equivalent. 

 

Finally, this implies that         and         are also Nash equilibria. In the case of        , if we 

imagine some joint strategy          such that                   , then                   , and 

        cannot be a Nash equilibrium either. Likewise,          such that                    

implies that                   . Therefore, since any joint strategy that would cause         to 

not be a Nash equilibrium would also invalidate the given equilibria, no such strategy can exist, and 

        is a Nash equilibrium. We can make an identical argument for        . 
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4. External regret vs. Swap regret.  In Rock-Paper-Scissors, Rock beats Scissors (winner has loss 0, 

loser has loss 1), Scissors beats Paper, and Paper beats Rock; if both player play the same action, 

they tie (each gets loss ½). 

 

Consider playing   games of Rock-Paper-Scissors against an opponent who first plays Rock     

times, then plays Scissors     times, then plays Paper     times. 

a) Thi ki g  f R ck  Paper  a d Sciss rs as three “experts”  describe i  w rds what 

Randomized Weighted Majority would do against such an opponent. To be concrete, 

consider the version of RWM that, when expert   incurs loss  , updates using    

        . Assume a learning rate   
 

 
, or if you like, you can think of  im   . 

Approximately (ignoring terms that are     ) what is the total loss of RWM and how does 

that compare to the loss of the best expert? 

b) What approximately is the swap regret of RWM? 

c) Since external regret is defined as the difference between the loss of the algorithm and the 

loss of the best expert, any two sequences of actions with the same total loss will result in 

the same external regret. Is this true for the swap regret? In the context of this Rock-Paper-

Scissors example, is there a behavior with approximately the same total loss as RWM but 

with much less swap regret? 

 

Thinking about this at a high level first, it’s fairly obvious that while our RWM starts out favoring 

each strategy evenly, the strategy for Paper will quickly eclipse the other two options and become 

the de facto choice for the first third of the match. At the end of that period, Paper will have a weight 

of 1 while Rock will have a weight of          and Scissors will have a weight of         . For 

this round, the approximate loss will be 0. 

Next, during the Scissors round, our strategy will be heavily in favor of the worst strategy, and will 

generally lose rounds until halfway through, when the weight of the Paper strategy becomes 

        , equivalent to the Rock strategy. At that point, Rock will shift to being the dominant 

strategy, and overall we will have won about half as many games as we lost. At the end of the round, 

Paper has weight         , Rock still has weight         , and Scissors will have weight 

        . 

Finally, the last phase will have Rock be the dominant strategy until the very end, and so we will 

lose almost all of the games. The probability distributions here will mirror the distributions in the 

first round for optimality, and so in total the approximation of losing none of the games in the first 

round, half the games in the second, and all of the games in the third, will even out. At the end, we 

should have a total loss of approximately    , which is the same loss we would have incurred if we 

played a pure strategy throughout. Thus the external regret of the algorithm tends to zero. 

 

In terms of swap regret however, we could have achieve a much better result if we were to have 

played Scissors every time we played Rock during the second half of the match. The effect here 

would mean that while, for the second half of the second round we would incur an average loss of 

1/2, during the third round we would take no losses. We would trade      loss to gain back    , 

making the total swap regret    . 
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One simple algorithm that would achieve good swap regret would be to simply play Rock, Paper, or 

Scissors with a uniform random distribution. In this case, we would end up winning     of the 

games, drawing     of the games, and losing the final    , for a net loss of    . However, swapping 

any of our actions would not produce a better outcome, since each action wins, loses, or draws with 

equal probability over the whole match. Both the external regret and the swap regret of this 

algorithm are zero. 


